
 

 

 
 

52M-2108 

20/3/2012 

Final Report  

Water Conservation by Replacing 
Cooling Towers  



 

 

 

 
 

Copyright and Intellectual Property 
This publication is copyright.  Other than for the 
purposes of and subject to the conditions prescribed on 
the Copyright Act 1968, no part of any Material in this 
Report may in any form or by any means (including 
optical, magnetic, electronic, mechanical, microcopying, 
photocopying or recording) be reproduced, broadcast, 
published, transmitted, adapted, or stored without the 
express written permission of the copyright owner.  All 
other rights are reserved. 
 
“Smart Water Fund” is a registered trademark, jointly 
owned by the Smart Water Fund participants, and is 
protected by laws governing intellectual property.  The 
Smart Water Fund trademark and logo must not be 
used except as part of any authorised reproduction of 
the Report as set out above.  The Smart Water Fund 
logo must not be modified in any way. 
 

Disclaimer 
The material contained in this Report has been 
developed for the Smart Water Fund. The views and 
opinions expressed in the Report do not necessarily 
reflect the views, or have the endorsement of the 
Victorian Water Utilities or the Department of 
Sustainability and Environment, or indicate the Victorian 
Water Utilities or the Department of Sustainability and 
Environment commitment to a particular course of 
action. 
 

Enquiries 
For enquiries or copies of this report please contact: 
 
Smart Water Fund  
Knowledge Transfer Manager 
Email: info@smartwater.com.au     
Phone: 1800 882 432 (freecall) 
Quote “Project 52M-2108” 
 
© Copyright Smart Water Fund, 2011 



 

 

2/2012           © Copyright Smart Water Fund 2011 – Water Conservation by Replacing Cooling Towers                  Page|3 

 

Executive Summary 

 

Executive Summary  
This report presents a study on applications of polymer heat exchangers to rejecting 
waste heat from a number of industrial processes. A plan for implementing the new 
waste heat rejection system in power stations and medium to large air-conditioning 
systems has been presented and issues likely to arise when implementing the plans 
have been identified. 

It has been found that polymer heat exchangers have great potential for replacing 
some of the air-cooled heat exchangers currently used in power plants, medium to 
large air-conditioning systems and air-handling units in central air-conditioning 
systems.  

It has been concluded that in the short term, the adoption of the polymer heat 
exchangers by power plants in Australia is unlikely because: 

 power plants currently pay a very low price for water used, and 

 the responsibility of providing reliable power supplies to the community will 
restrict power plants adopting new technologies.  

It has been found that the polymer heat exchangers can be immediately used to 
replace the metal heat exchangers in the hybrid cooling systems used as coolers 
and air-handling units in large air-conditioning systems. With polymer heat 
exchangers, not only can the cost of the hybrid cooling systems be reduced but also 
the performance can be improved because water can be directly sprayed or 
distributed on to the polymer surfaces, reducing the need for special coatings or 
evaporation pads and reducing the fan power required. 

It has been found that exposures to biocidal concentrations of hypochlorite would not 
be expected to affect the polypropylene (PP) flute boards to any extent. The PP flute 
board and spacer materials used in the construction of the cooling systems in this 
project would be expected to be stable under the normal operating conditions. 

Further research is required to select the polymer materials to handle high pressures 
when using polymer heat exchangers for cooling refrigerant gases. Care is also 
needed to ensure that there is no detectable loss of refrigerant gas at such high 
pressures since the loss of refrigerant is a serious issue and it must be prevented at 
all cost.  

In order to develop the air-cooled polymer heat exchangers into commercial 
products, further research is needed to develop techniques and manufacturing 
processes to fabricate water tight polymer heat exchangers. 

To gain market acceptance of the polymer heat exchangers, it is necessary to find 
an industry partner to test the performance of the polymer heat exchangers in field 
applications. 
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1. BACKGROUND 

Over 100 GL of fresh water, or 25% of Melbourne’s water consumption, is lost 
annually through cooling towers in power stations and large air-conditioning systems 
in Victoria. This makes cooling towers one of the largest industrial consumers of 
fresh water. Currently power stations and large air-conditioning systems use cooling 
towers to reject waste heat. The waste heat is carried by warm water which is 
normally sprayed, evaporated and mixed with cooling air inside cooling towers. The 
cooling air together with the evaporated water is rejected to the ambient and thus 
water is lost by cooling towers. By eliminating water losses through cooling towers, 
valuable fresh water can be saved for the Victorian community. Cooling towers 
around Melbourne not only lose fresh water, but they are also the sources for the 
outbreaks of Legionnaires’ disease. Because of these considerations, new 
technologies which are able to reduce water consumption and create a safe 
environment would benefit the community greatly. The project “Water Conservation 
by Replacing Cooling Towers” is to develop such technologies with the aims of 
designing and studying a new waste heat rejection system which consists of a highly 
compact heat exchanger made of polymer materials, studying the feasibility of 
replacing cooling towers in power stations and large air-conditioning systems by this 
new system and establishing its operational parameters. 

The project has been funded by the Smart Water Fund over three years. So far, we 
have completed all the experiments and simulations for the polymer heat exchangers 
we built. This is the final report of the project. 

This project started with the concept of using polymers as the materials of building 
heat exchangers for heat transfer between water and air. The advantages of polymer 
materials include their low cost, corrosion resistance and easy fabrication in 
comparison with metals such as aluminium and copper which are the main materials 
of building heat exchangers for industrial applications. 

We have fabricated three heat exchangers using polypropylene flute boards, two 
counter flow heat exchangers and one cross flow heat exchanger. Due to the 
difficulty in preventing water leaks, we conducted experiments mainly on the counter 
flow heat exchangers. The experiments were conducted both in a laboratory at 
Victoria University and in the field at Yallourn power station. The experiments at 
Victoria University were for simple air cooling while the experiments at the Yallourn 
power station were for both simple air cooling and hybrid cooling in which the 
performance is enhanced using water evaporation. The experimental results from 
the VU laboratory were presented to the Smart Water Fund in Milestone 5 report and 
the experimental results from the Yallourn power station were presented to the 
Smart Water Fund in reports for Milestones 6 and 7. 

Here we will develop plans for implementing the new waste heat rejection system in 
power stations, large air-conditioning systems and other areas of applications for the 
air-cooled polymer heat exchangers, and identify issues in implementing these 
plans.    

 
2. CURRENT TECHNOLOGIES FOR REJECTING WASTE HEAT AND AREAS OF 
APPLICATIONS OF AIR-COOLED HEAT EXCHANGERS 
Waste heat rejection is required in many industries such as power stations, large-air 
conditioning systems, chemical and food processing industries as well as in many 
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service industries. Two large areas of application are in cooling power stations and in 
large air-conditioning systems.  
 
2.1 Power stations 
In power stations, several cooling technologies are available including once-through 
cooling, wet-recirculating cooling, dry cooling and hybrid cooling [1]. Table 1 from Dr 
Harlan Bengtson (http://www.brighthub.com/engineering/mechanical/ articles/ 
64576.aspx) shows the percentages of different types of cooling technologies used 
in different US power plants (coal fired, non-coal fossil fired, combined cycle and 
nuclear) and Table 2 shows the typical water consumption for each MWh of 
electricity generation from the different types of power stations using different types 
of wet cooling technologies including once-through, pond cooling and cooling towers.  

The once-through system generally withdraws very large amount of water from water 
bodies such as the sea, lakes or rivers to cool the power plants and the water is 
returned at an elevated temperature to the water body. The cooling of the power 
plants is achieved through sensible heat gain of the cooling water.  Not only can 
some water be lost through evaporation (evaporative water loss associated with 
once through systems as a result of increased evaporation losses from the receiving 
water body surface caused by the differential temperature increase of the thermal 
plume), but additionally the water body is affected by the elevated temperature.   

Wet-recirculating cooling uses mechanical draft or natural draft cooling towers. The 
cooling is mainly achieved through the evaporation of water and latent heat gain. In 
comparison with once-through systems, these cooling towers withdraw only a small 
amount of water [1] from the water body to replenish the water lost through 
evaporation. The amount of water loss through this evaporation from each power 
station using cooling towers is still quite large (in the order of many Giga Gallons per 
year). Chemical treatment of the cooling water [2] and visual plumes are some of the 
issues in using cooling towers. 

Air-cooled condensers are used for direct dry cooling (condensing the exhaust steam 
directly) and indirect dry cooling (cooling the water which condenses the exhaust 
steam) [3]. For dry cooling, there is no water loss because either water is flowing in a 
closed loop or direct air cooling to the steam. The heat rejection is achieved through 
the sensible heat gain of air forced through the air-cooled condensers by fans of 
large diameters. These air-cooled condensers are normally made of metals which 
results in high capital cost [1], especially with the recent rapid increase of metal 
prices on the world market. The operating cost from the power consumption for 
driving the fans is also high in comparison with cooling towers [1]. In general, there 
will be thermodynamic cycle efficiency penalties in using air-cooled condensers in 
comparison with using wet-recirculating cooling towers when the ambient 
temperature is high [1]. 

Hybrid cooling is a combination of dry cooling and wet-recirculating cooling. When 
the ambient temperature is low, only dry cooling is needed to reject the heat from the 
turbine exhaust steam. When the ambient temperature is high, water can be sprayed 
in front of air-cooled condensers to reduce the temperature of the air flowing across 
the condenser tubes (there are other methods of achieving the hybrid cooling in this 
situation) [4]. By carefully setting the temperature at which water sprays are initiated, 
up to 95% of cooling water can be saved in comparison with using wet-recirculating 
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cooling only and there will be less cycle efficiency penalties in the performance of the 
power plants in comparison with using dry air cooling only. 

In Australia, electricity is generated mainly in coal fired power plants, and the 
majority of their cooling is achieved by cooling towers. Also, the majority of cooling 
towers in Australia are the natural draft type with a very high capital cost. Recently, 
air-cooled condensers have been used in a few power stations such as Darling 
Downs combined-cycle power station, Kogan Creek coal-fired power station and 
Millmerran power stations, all in Queensland. 

 

Table 1 Percentage of different types of cooling used in different types of power 
plants (http://www.brighthub.com/engineering/mechanical/ articles/64576.aspx) 
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Table 2 typical water consumption for different types of wet cooling from Dr Harlan 
Bengtson (http://www.brighthub.com/engineering/mechanical/ articles/64576.aspx) 

 

 

 

2.2 Large air-conditioning systems and other applications of air-cooled condensers 

Large air-conditioning systems are mainly used in office buildings, hospitals, hotels, 
shopping centres, factories, food retails and trades and processing industries. Here, 
as in power stations, cooling technologies such as cooling towers, air-cooled 
condensers and hybrid cooling are in use to maintain the desired conditions. 

Apart from rejecting waste heat for large air-conditioning systems, air-cooled heat 
exchangers have also been used in air handling units in large central air-conditioning 
systems as shown in Appendix A (Figures A1 and A2) where the heat exchangers 
are used to transfer cooling (heating) duty from refrigeration (heat pump) units to 
circulating air for cooling (heating), air cooled condensers for medium size air-
conditioning systems (Figure A3) and air cooled heat exchangers for medium to 
small size refrigeration and HVAC cooling (Figure A4).  In all these applications, the 
maximum temperature of the fluid is less than 60°C.  Other applications of air-cooled 
heat exchangers include: 

 Forced and induced draft air cooled heat exchangers  
 Recirculation and shoe-box air cooled heat exchangers  
 Hydrocarbon process and steam condensers  
 Large engine radiators  
 Turbine lube oil coolers  
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Table 4 Cost difference of wet and dry cooling systems in comparison with a once-
through cooling system (http://www.brighthub.com/engineering/mechanical/ 
articles/64576.aspx) 

 

 

4. COST COMPONENTS OF AIR-COOLED SYSTEMS IN POWER PLANTS 

Figure 9 from [3] shows the air-cooled cooling system used at the El Dorado power 
plant and Figure 10 [3] shows a schematic diagram of an air-cooled condenser 
(ACC) for power plants. As according to [3], the main cost components for an air-
cooled condenser include: 

1) finned-tube bundle systems consisting of heat exchangers, finned tubes, 
and associated headers; 

2) structures to support the finned-tube bundle systems as well as motor and 
fan systems; 

3) steam ducting for transporting steam from the turbine exit to the air-cooled 
condensers; 

4) air removal system for removing non-condensable gas from the steam and 
this is required for all air cooling systems; 

5) mechanical equipment including fans, fan drives (motors) and gearboxes.  

Table 5 from [3] gives the relative cost breakdown of the various components of an 
ACC system. Table 5 shows that the cost percentage for heat exchanger bundles is 
about 32% for a total system cost of $600,000. According to Figure 1, the capital 
cost of dry cooling systems for a 500MW combined-cycle power plants exceeds $20 
million. It is expected that, as the size of the system is increased, the relative cost of 
the heat exchanger bundles will be higher than the 32% given in Table 5 since the 
relative costs for structural steel, steam ducting, transportation and other servicing 
components will decrease. Estimation using the data given in [1] shows that the heat 
exchanger bundles and the mechanical (fans and motors) can account up to 70% of 
the total cost of the air-cooled system for a 170MW electricity generation by the 
steam turbine from a combined 500MW combined cycle power plant. After removing 
the cost for the mechanical components, it is expected that for such a large air-
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cooling system, the cost for the heat exchanger bundles would be about 65% that of 
the total air-cooled system.  

 

Table 5 Typical air-cooled condensers component cost breakdown [2] 
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The above discussion has focused on wet cooling and simple dry cooling systems. 
The two cooling technologies can be combined to form hybrid cooling systems with 
evaporative cooling being required only when the ambient temperature is high. 
Although the capital cost of a hybrid cooling system may be slightly higher than that 
of a dry cooling system, its annualized cost will be much less than that of simple dry 
cooling systems because a large contribution to the annualized cost for using dry 
cooling system arises from a shortfall in capacity, especially in hot arid environments 
as indicated in Table 6 [1].  

 

Table 6 Cost of ACC at five sites for a 500MW combined cycle power plant [1] 

 

 

5. ECONOMIC EVALUATION OF AIR-COOLED SYSTEMS FOR AIR-
CONDITIONING BASED ON CURRENT METAL HEAT EXCHANGERS 
Gert Dierks and Stephen Fairgrieve [5] have undertaken a technical and economical 
evaluation of cooling systems incorporating refrigeration and air-conditioning 
technology for a refrigeration plant in Frankfurt city centre. They compared an open 
loop evaporative cooling tower, an open evaporative cooling tower with an 
intermediate heat exchanger, a closed loop evaporative cooling tower with an 
intermediate heat exchanger, a closed loop evaporative cooling tower, an air-cooled 
heat exchanger with co-current water spray cooling, an air-cooled heat exchanger 
with counter-current fogging and a hybrid dry cooling system as shown in Figure 11. 

In the detailed technical and economic evaluation [5], some of the above mentioned 
cooling technologies were excluded due to technical difficulties in meeting the 
cooling requirement and corrosion of the equipment. Tables 7 and 8 are the results 
[5] from the technical and economic evaluation of the selected four cooling 
technologies.  It can be seen from these evaluations that the hybrid dry cooling 
system is the preferred choice, both technically and economically. 

The cost estimations given in Table 8 are based on a heat load of 630 kW to be 
removed from the condenser and rejected to the environment. When the same 
evaluations are undertaken in Australia, the cost of water would be less since the 
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cost of water in Australia is about $1.0/m3 which is about half of that shown in Table 
8. Table 9 shows the results in Australia by using a water price (including the waste 
water cost and water treatment) as half of that in Europe while the cost of other 
components have been kept the same. Table 9 shows that in Australia, the annual 
cost of hybrid cooling systems is about half of that for the open loop evaporative 
cooling towers while in Europe it is about one third. 

In Australia, Muller Industries manufactures hybrid cooling systems for large air-
conditioning and refrigeration plants.  Its working principle is shown in Figure 12 
which is very similar to that shown in Figure 11. When the temperature of the 
ambient air is low, it cools the air conditioning units using the ambient dry air. When 
the temperature of the ambient air is high, water flows from the top of the pre-cooled 
evaporation pads and wets the pads. As air flows through the wetted evaporation 
pads, its temperature drops below the ambient temperature to close to that of the 
ambient wet bulb temperature as it becomes saturated with water vapour before 
entering the heat exchangers. This will result in an increased temperature difference 
between the warm water flowing inside the copper tubes and the saturated air 
flowing across the aluminium fins of the heat exchangers so that the designed heat 
rejection capacity can be achieved without increasing the power consumption 
associated with driving the fans to force additional air through. In comparison with 
air-cooled heat rejection only, some water will be lost from these hybrid cooling units. 
By properly selecting the temperature at which water starts flowing in the hybrid 
cooling units, up to 80% of water can be saved in comparison with air conditioning 
systems using cooling towers. Thus the systems developed by Muller Industries 
consume less power during hot summer days in comparison with dry air-cooled 
systems and they save water in comparison with those using cooling towers since 
they use water for a fraction of the time in comparison with that in operating cooling 
towers.   
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Table 7 Cooling system technical evaluation [5] 

  Solution 1  Solution 2  Solution 3  Solution 4  

Evaluation criteria (VDI 2225) Wgt. 
Factor 

Open loop 
evaporative 
cooling 
tower 

Pts Closed loop 
evaporative 
cooling tower 

Pts Air-cooled heat 
exchanger with 
fogging 

Pts Hybrid dy 
cooling 
system 

Pts 

Space requirements LXWXH 
(base area) 

3 2.7X3.5X3.5 
(9.45m3) 

10 5.3X2.8X3.75 
(14.8m3) 

9 2X6.7X3.2X3.5 
(42 m3) 

5 5.4X2.44X3.7 
(13.18m3) 

9 

Operating weight 3 5825kg 10 12000kg 3 11000kg 3 6640 9 

Make-up water (evaporative)  7885to/yr  7885  2300to/yr  2547to/yr  

Make-up water (blowdown)  7885 to/yr  7885 to/yr  0  849 to/yr  

Make-up water (drift losses)  0.79 to/yr  0  0  0  

Total make-up water  4 15770 to/yr 2 15770 to/yr 2 2300 to/yr 10 3396 to/yr 8 

Circuit water contamination  3 yes 2 no 10 no 10 no 10 

Fan power requirement 4 3.5kW 10 27kW 2 28.8kW 2 8.4kW 7 

Freeze protection heater power 
requirement 

3 2.0kW 3 2.0kW 3 0 10 0 10 

Internal pump power 
requirement 

3 0 10 3.6kW 4 5.0kW 3 0.55kW 7 

Visible plume 4 yes 2 yes 2 no 10 no 10 

Number of fans 2 1 4 1 4 6 2 2 7 

Maintenance 2 2 day/yr 7 3 days/yr 6 2 days/yr 7 2 days/yr 7 

Corrosion protection 4 Good 7 Good 7 Satisfactory 5 Extremely 
Good 

8 

Pointstot=Wgt Factor X pts 35  211  159  219  295 
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Table 8 Cooling system economical evaluation [5] 

  Solution 1 Solution 2 Solution 3 Solution 4 

Type of cost  Open loop 
evaporative 
cooling 
tower 

Closed loop 
evaporative 
cooling 
tower 

Air-cooled 
heat 
exchanger 
with fogging 

Hybrid dry 
cooling 
system 

Procurement 
value, incl. 

     

Assembly 
and 
commission  

EURO € 17100,00 37500.00 90675.00 72500.00 

Depreciation 
period 

Years 15 15 15 15 

Interest rate % 5 5 5 5 

Annuity % 9.63 9.63 9.63 9.63 

Make-up 
water costs 

EURO/m3 2.20 2.20 2.20 2.20 

Waste water 
costs 

EURO/m3 1.73 1.73 1.73 1.73 

Water 
treatment 

EURO/m3 0.60 0.60 0.60 0.60 

Blowdown 
concentration 
factor 

 2 2 0 3 

Power costs EURO/kWh 0.13 0.13 0.13 0.13 

      

Total water 
cost 

EURO/year 71438.00 71438.00 10419.00 15384.00 

Power costs EURO/year 1613.00 15928.00 20199.5 5808.00 

Maintenance 
costs 

EURO/year 1250.00 1875.00 1250.00 1250.00 

Capital costs EURO/year 1647.00 3611.50 8232.00 6982.00 

Total annual 
cost 

EURO/year 75948.00 92852.50 40100.50 29424.00 
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One issue with heat exchangers built using polymers is that they may not last as long as 
those made from using aluminium, especially when the condensers are exposed to direct 
sunlight. However, sunlight inhibiting agents can be added to the polymers to prolong their 
life. Also, protection measures for the heat exchangers from direct sunlight exposure can 
be built into each individual heat exchanger or in the final overall system. A discussion on 
the stability of polymer materials, based on a study undertaken by Dr Marlene Cran of the 
Institute for Sustainability and Innovation of Victoria University, is given in Appendix B. The 
results show that normal exposures to biocidal concentrations of hypochlorite would not be 
expected to affect the polypropylene (PP) flute boards to any extent. The PP flute board 
and spacer materials used in the construction of the cooling system during this project 
would be expected to be stable under normal operating conditions. 

 
8. PLANS FOR IMPLEMENTING THE NEW WASTE HEAT REJECTION SYSTEMS 
 
8.1 Replacing cooling towers in power plants 
Since the late 1990s, air-cooled condensers have been increasingly used for cooling 
power plants due to the requirement to conserve water and concerns over the 
environmental impacts of wet cooling. Currently, commercially available air-cooled 
condensers are constructed from metals and are very expensive in terms of capital cost 
and operational cost (high energy consumption). Because of this, power plant and large 
air-conditioning system operators are reluctant to use air-cooled condensers made of 
metals. Recently, the American Electric Power Research Institute (EPRI) has made 
developing Advanced Cooling for power plants as its top priority research area in the next 
6 to 8 years. 

In replacing the cooling towers by air-cooled condensers, many concerns need to be 
considered before decisions can be made to adopt the polymer heat exchangers: 

(1) Capital cost  
By using the price difference between aluminium and polymer materials, it is expected that 
the cost of the heat exchanger bundles made of polymer materials will be about 20% of 
that aluminium. Since the cost of heat exchanger bundles can account for 65% of the total 
cost of the dry cooling systems as mentioned above, it is expected that the total capital 
cost of air-cooled cooling systems for power plants will be half of the current capital cost of 
using aluminium heat exchanger bundles. This is because the cost of fans, motors, 
supporting structures and steam ducting will be expected to remain the same irrespective 
what material is used for fabricating the heat exchanger bundles. Using the results given in 
Figure 2, it is expected that the capital cost of an air-cooled cooling system using polymer 
heat exchanger bundles will still be twice as expensive as that of using cooling towers. 

(2) Operating cost 
The operating cost includes the cost of power for driving the fans (both the wet cooing for 
forced draft type cooling towers and the dry cooling systems) and pumps (for wet cooling 
systems), the cost of water and its treatment (wet cooling), the cost of maintenance and 
the cost of capacity shortfall (dry cooling systems). Tables 3 and 6 from [1] show the total 
annual costs for wet system and air-cooled system for a 500MW combined-cycle power 
plant for five sites of different environment conditions. The prices for electricity and water 
are assumed to be $35/MWh and $1.00/kgal, respectively. The results in Tables 3 and 6 
show that the annualized cost for the air-cooled system (with metal heat exchangers) is in 
general more than twice as high as that for wet cooling. 

Table 11 compares the annualized cost of wet cooling systems and the air-cooled systems 
of using metal heat exchangers and polymer heat exchangers for Site 1 as given in Tables 
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3 and 6 (hot arid environment). It can be seen from Table 11, the ratio of the annualized 
cost between the air-cooled systems and that of wet cooling systems has been reduced 
from 2.25 to 1.76 when the metal heat exchangers are replaced by polymer heat 
exchangers. 
 

 
Table 11. Annualized cost of wet cooling and air-cooled systems with metal and polymer 
heat exchangers for Site 1 given in Tables 3 and 6. 
Cost comparison between wet cooling, air-cooled condensers made of metals and 

polymer materials 
 Wet cooling Air cooling Air cooling 

 Metal (Aluminium) Polymer materials 
Capital cost $5,775,000 $23,022,000 $11,510,000 
Annualized Capital 
cost 

$462,000 $1,841,747 $920,873.5 

Annual power cost $465,000 $1,137,331 $1,137,331 
Cost of capacity 
shortfall 

-$60,000 $929,870 $929,870 

Maintenance cost $115,500 $345,328 $345,328 
Water cost $910,000 base Base 
Total annualized 
cost 

$1,892,500 $4,254,000 $3,333,420.5 

Cost ratio 1.0 2.25 1.76 
 

(3) Plant cycle efficiency penalty  
Currently, one issue of using air-cooled condensers for power plants is the plant cycle 
efficiency penalty in comparison with using wet-recirculating cooling systems when the 
ambient temperature is high. This is mainly due to the fact that wet-recirculating cooling 
system relies on wet bulb temperature of the ambient air and simple air-cooling systems 
rely on dry bulb temperature. When the ambient temperature is high, as on hot summer 
days, the heat rejection capacity of a simple air-cooled system will be reduced due to the 
smaller temperature difference between the steam to be condensed and the ambient air. 
This will result in a temperature increase in the condensate and the back pressure of the 
turbine and a reduction in the energy efficiency of the turbine. Because of this, the turbine 
will not be able to produce as much electricity and this will result in a penalty on plant 
thermodynamic cycle efficiency. Worse still, this happens at a time when electricity is in 
high demand and profit margin of the power plants is at the highest during a year. Also, 
the designed initial temperature difference (ITD) for simple air-cooled condensers is in 
general higher than that for wet-recirculating cooling in order to reduce the capital cost of 
purchasing the air-cooled condensers made of metals.  

One solution to reduce the plant cycle efficiency penalty is to use hybrid cooling systems 
similar to those shown in Figures 8 and 9. Our experimental results from the Yallourn 
power station (as presented in the Milestone 7 report) show that with hybrid cooling, the 
cooling capacity of the air-cooled system can be maintained the same as the wet cooing 
system and that a water saving up to 95% can be achieved for power stations in the 
Latrobe Valley.  Table 14 shows the effect of using hybrid cooling on the annualized cost. 
In Table 14 we have assumed that only 80% of water can be saved in comparison with 
that of wet cooling systems and we assume that the cost of water distribution systems for 
the evaporative cooling is low in comparison with other major components. It can be seen 
from Table 14 that with hybrid cooling systems, the annualized cost ratio for cooling a 
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500MW combined cycle power plant can be reduced to 1.37 (relative to that of wet 
cooling). 
 
Table 12 Annualized cost of wet cooling, air-cooled systems with metal heat exchanger 
bundles and hybrid cooling with polymer heat exchangers for Site 1 given in Tables 3 and 
6. 

Cost comparison between wet cooling, air-cooled condensers made of metals and 
hybrid cooling with polymer heat exchangers 

 Wet cooling Air-cooled cooling Hybrid cooling 
 Metal (Aluminium) Polymer materials 

Capital cost $5,775,000 $23,022,000 $11,510,000 
Annualized Capital 
cost 

$462,000 $1,841,747 $920,873.5 

Annual power cost $465,000 $1,137,331 $1,137,331 
Cost of capacity 
shortfall 

-$60,000 $929,870 base 

Maintenance cost $115,500 $345,328 $345,328 
Water cost $910,000 base $182,000 
Total annualized 
cost 

$1,892,500 $4,254,000 $2,585,532.5 

Cost ratio 1.0 2.25 1.37 
 
(4) High temperature  
Condensers built from polymers cannot be used in high temperature conditions, especially 
commonly available low cost polymers. In cooling power plants, the temperature of the 
turbine exhaust steam is in general less than 70°C (9.2 in. Hga back pressure, typical 
guidelines are: “alarm” @ 7.0 in. Hga, “trip” @ 8.0 in. Hga [7]). This is well within the 
continuous operation temperature range (90°C-120°C) of most polymers available If using 
indirect air-cooling (air is used to cool the recirculating water rather than exhaust steam), 
the maximum temperature of the fluid entering the air-cooled condensers can be controlled 
to be less than 50°C.  

(5) Power consumption of the cooling systems 
Power is required to operate the cooling systems. In wet cooling, this is required to drive 
the fans (for forced draft cooling towers) and to pump the cooling water to and from the 
cooling towers (natural draft cooling towers). In simple air cooling, it is used mainly for 
driving the fans. In hybrid cooling, it is used for driving the fans and pumping water for 
spraying (or water distribution which requires less pressure and thus less power).  

In designing the polymer heat exchangers, the fan power consumption based on the 
calculated pressure drop and flow rate is about 100W for a 25 kW heat rejection as shown 
in the report for Milestone 3. It is expected that the fan power for driving the polymer heat 
exchangers will be less than that of metal heat exchangers because the air flow in polymer 
heat exchangers is laminar while that in metal heat exchangers is in general turbulent flow. 
In the experiments conducted at Yallourn power plant, we measured the air pressure 
drops across the heat exchanger and the air flow rates. From this, it has been estimated 
that the fan power consumption is about 135W for a heat rejection of 15kW. The reason 
for this increase of heat rejection/fan power in comparison with the designed fan power of 
100W for 25kW heat rejection is due to the low water flow rates (<0.19kg/s) and low 
temperature (<45°C) of the warm water entering the heat exchanger in the field 
experiments. In contrast, the design conditions are: water flow rate of 0.25kg/s and water 
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temperature of 50°C entering the heat exchanger. Also, the air flow rate for the 
experiments at Yallourn power station is about 10% higher than that of the designed 
condition. Using the experimental data from the Yallourn power station (given the above 
considerations, this is an over estimation), it can be estimated that, for a 500MW 
combined-cycle power plant, the fan power required for the polymer heat exchangers as 
air-cooled condensers will be about 3MW. The average fan power is about 4MW as given 
in [1] for the same power plant using air-cooled metal heat exchangers.  

When applying the polymer heat exchangers to directly condense the steam from the 
power plants (direct cooling), it is expected that the power consumption will be less than 
that estimated using the experimental data from Yallourn power station. This is because 
the steam is in general at a higher temperature than the cooling water from the power 
plants during our experiments and the temperature change of the steam during 
condensation is small (theoretically it should be zero) as it flows through the air-cooled 
condenser as in direct cooling. This is unlike cooling water because  its temperature 
decreases significantly as it flows through the heat exchanger, thus reducing the average 
temperature difference between the warm water and the cooling air. Because of this, it is 
expected that the temperature difference between the steam and the air will be much 
higher on average than that between the air and the cooling water. The large temperature 
difference in directly cooling steam will enhance the efficiency of the heat exchangers and 
thus less fan power will be required.  

However, to be confident about the power saving of using polymer heat exchangers in 
comparison with that of using metal heat exchangers, further studies are required, 
especially for large air-cooled condensers 

. 

(6) The Australian situation 
As mentioned above, in Australia, most of large power plants use natural draft cooling 
towers for cooling. Because of their high capital cost, it is expected that future power 
plants will be less likely to use natural draft cooling towers if evaporative cooling is still the 
preferred choice of cooling. Currently, the water price for power stations is very low and 
water entitlements are generally allocated for the life of the power plants. Thus, 
economically, it is not appealing for power plants to use air-cooled condensers unless the 
power plants are located inland. Also, power plants are required to provide reliable power 
supplies to the community and will be very reluctant to adopt new technologies. It is 
believed that, at least in the short terms, Australian power stations will not be likely to use 
polymer heat exchangers to cool their power plants. 
 
8.2 Replacing cooling towers in large air-conditioning systems 
As the results in Tables 8 and 9 and those in Figure 11 show air-cooled condensers are 
more cost effective than wet cooling towers. The reason for this, in contrast to that in 
power plants, is that the water price in urban areas is in general much higher than that for 
power plants.  

Polymer heat exchangers are well suited to be employed in hybrid cooling systems for 
large air-conditioning systems because of their low cost and the operating temperature 
and pressure are well within the limits of the commonly used polymer materials. Also, 
because the polymer materials have better corrosion resistance than most metals, water 
can be sprayed or distributed onto the heat exchangers directly. No special coatings is 
required, there will be no need for evaporation pads such as those used in Muller 
Industries’ 3C Cooler units  hence less fan power will be required..  
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We approached Muller Industries to collaborate on further development of the polymer 
heat exchangers for use in their hybrid cooling systems. Muller Industries initially agreed to 
be part of the team to apply to the Smart Water Fund but withdrew at the last minute due 
to a change of ownership of the company (Muller Industries was taken over recently by an 
American company).  

An issue concerning hybrid cooling for large air-conditioning systems is the space required 
to install the cooling system. As shown in Table 7, hybrid cooling systems require a slightly 
larger space than wet cooling systems. 
 
8.3 Replacing air-cooled condensers for medium size air-conditioning systems 
Polymer heat exchangers can be used for air-cooled condensers for medium size air-
conditioning systems if the pressure is within the limits of the polymer materials used to 
build the polymer heat exchangers. In most of the air-cooled condensers for air-
conditioning systems, refrigerant gas rather than liquid water is to be cooled. In this case, 
the pressure of superheated refrigerant gas is on the order of 1MPa which is much higher 
than the limit of the pressure that can be applied to the polypropylene flute boards used in 
this study. Other polymer materials may be more suitable in handling such high pressures. 
Care is also needed to ensure that there is no detectable loss of refrigerant at such high 
pressures since the loss of refrigerant is a serious issue and it must be stopped at all cost.  
 

8.4 Replacing coils used in air-handling units 
Coils in air-handling units are in general used to transfer heat from water to air or from air 
to air. The polymer heat exchangers are well suited to be used in the air-handling units to 
replace coils made of metals. 
  
9. IDENTIFY ISSUES IN IMPLEMENTING THE PLANS 
As air-cooled condensers, the polymer heat exchangers will have similar risks as those 
made of metals when they are used for cooling. The same measures applied to metal heat 
exchangers to minimize these risks also apply to the polymer condensers. 

One of the risks for polymer heat exchangers is potential damage. To take full advantage 
of polymer heat exchangers (low cost and low density), the thickness of polymer walls in 
building the heat exchangers will be small. Because of this, it is possible that the walls can 
be damaged under direct impact by sharp objects and leaking of fluid from one stream to 
another might occur. This can be avoided by installing protective screens to cover the 
frontal external surfaces of the heat exchangers. Also, the heat exchangers can be built in 
small modules so that they can be replaced easily without interrupting the operation. 

Technically, the leaking of water from the polymer heat exchangers needs to be prevented 
before the polymer heat exchangers can be used commercially. Techniques and 
manufacturing processes need to be developed to build watertight polymer heat 
exchangers. It is believed that such techniques and processes can be developed. 

Because they are relatively new, polymer heat exchangers need to be thoroughly tested 
under various field conditions before they can be accepted by industries and consumers. It 
is believed that an industry partner like Muller Industries would be well suited to promote 
the polymer heat exchangers to the market. 

 

10. CONCLUSIONS AND DISCUSSION 
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It has been found that polymer heat exchangers have potential in replacing some of the 
air-cooled heat exchangers currently used in power plants, medium to large air-
conditioning systems and air-handling units in central air-conditioning systems.  

However, they are unlikely to be used in power plants in Australia in the near term 
because currently power plants pay a low price for water and, because of their perceived 
responsibility to provide reliable power supplies to the community, they may not be 
disposed to adopting different approaches to cooling their plants.  

It has been found that the polymer heat exchangers can be immediately used to replace 
metal heat exchangers in the hybrid cooling systems used in large air-conditioning 
systems and the air-handling units. With polymer heat exchangers, not only the cost of 
hybrid cooling systems can be reduced but also the performance can be improved 
because water can be directly sprayed or distributed on the polymer surface, reducing the 
need for special coatings or evaporation pads and reducing the fan power. 

Further research is required to select the polymer materials to handle high pressures when 
using polymer heat exchangers for cooling refrigerant gas. Care is also needed to make 
sure that there is no detectable loss of refrigerant gas at such high pressures since the 
loss of refrigerant is a serious issue and should be avoided.  

It has been found that normal exposures to biocidal concentrations of hypochlorite would 
not be expected to affect the polypropylene flute boards to any extent. The PP flute board 
and spacer materials used in the construction of cooling systems are expected to be stable 
under normal operating conditions. 

In order to develop air-cooled polymer heat exchanger systems into commercial products, 
further research is needed to develop techniques and manufacturing processes to build 
watertight polymer heat exchangers. 

To facilitate market acceptance of polymer heat exchanger systems, it may be necessary 
to find an industry partner to test and demonstrate the performance of polymer heat 
exchanger systems in field applications. 
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(a)   (b) 

Figure B4 SEM images of PP flute (a) before and (b) after hypochlorite exposure. 

 
The FTIR analysis of the PP flute before and after extreme hypochlorite exposure revealed 
a significant change in the carbonyl peak as shown in Figure B5. A carbonyl index > 3 was 
determined and is indicative of a substantial oxidative change in the material. The units 
ppm-hours are often used in industry to calculate the relative exposure of an agent with 
time and are equivalent to the product of concentration (ppm) and exposure time (hours). 
The hypochlorite exposure experienced by the PP flute in this experiment was ca. 240,000 
ppm-hours, far greater than would be expected in normal operating conditions which 
would be in the order of 1000 to 2500 ppm-hours over a year. Moreover, there is no 
evidence to suggest that the ppm-hours are linear with time or concentration. 
 

Summary 
The PP flute did not undergo any significant oxidative change under moderate heating or 
with exposure to biocide concentrations of hypochlorite. Exposure to some extreme 
concentrations of hypochlorite resulted in some significant, observable oxidative changes 
in the PP flute material. Normal exposures would not be expected to affect the PP flute to 
any extent. The PP flute board and spacer materials used in the construction of the 
cooling system would be expected to be stable under the current operating conditions. The 
effect of UV exposure has not been studied and needs to be investigated before the 
polymer heat exchangers can be used for industrial applications where they are exposed 
to direct sunlight. 
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